365bet主页

三次方程

📅 2025-06-30 18:43:05 👤 admin 👁️ 7801 🏷️ 952

求根公式法

编辑

a

x

3

+

b

x

2

+

c

x

+

d

=

0

,

a

0

{\displaystyle ax^{3}+bx^{2}+cx+d=0,a\neq 0}

x

1

=

b

3

a

+

b

c

6

a

2

b

3

27

a

3

d

2

a

+

(

b

c

6

a

2

b

3

27

a

3

d

2

a

)

2

+

(

c

3

a

b

2

9

a

2

)

3

3

+

b

c

6

a

2

b

3

27

a

3

d

2

a

(

b

c

6

a

2

b

3

27

a

3

d

2

a

)

2

+

(

c

3

a

b

2

9

a

2

)

3

3

{\displaystyle x_{1}=-{\frac {b}{3a}}+{\sqrt[{3}]{{\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}+{\sqrt {\color {red}\left({\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}\right)^{2}+\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}}}}}+{\sqrt[{3}]{{\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}-{\sqrt {\left({\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}\right)^{2}+\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}}}}}}

x

2

=

b

3

a

+

1

+

3

i

2

b

c

6

a

2

b

3

27

a

3

d

2

a

+

(

b

c

6

a

2

b

3

27

a

3

d

2

a

)

2

+

(

c

3

a

b

2

9

a

2

)

3

3

+

1

3

i

2

b

c

6

a

2

b

3

27

a

3

d

2

a

(

b

c

6

a

2

b

3

27

a

3

d

2

a

)

2

+

(

c

3

a

b

2

9

a

2

)

3

3

{\displaystyle x_{2}=-{\frac {b}{3a}}+{\frac {-1+{\sqrt {3}}\,{\rm {i}}}{2}}{\sqrt[{3}]{{\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}+{\sqrt {\left({\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}\right)^{2}+\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}}}}}+{\frac {-1-{\sqrt {3}}\,{\rm {i}}}{2}}{\sqrt[{3}]{{\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}-{\sqrt {\left({\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}\right)^{2}+\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}}}}}}

x

3

=

b

3

a

+

1

3

i

2

b

c

6

a

2

b

3

27

a

3

d

2

a

+

(

b

c

6

a

2

b

3

27

a

3

d

2

a

)

2

+

(

c

3

a

b

2

9

a

2

)

3

3

+

1

+

3

i

2

b

c

6

a

2

b

3

27

a

3

d

2

a

(

b

c

6

a

2

b

3

27

a

3

d

2

a

)

2

+

(

c

3

a

b

2

9

a

2

)

3

3

{\displaystyle x_{3}=-{\frac {b}{3a}}+{\frac {-1-{\sqrt {3}}\,{\rm {i}}}{2}}{\sqrt[{3}]{{\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}+{\sqrt {\left({\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}\right)^{2}+\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}}}}}+{\frac {-1+{\sqrt {3}}\,{\rm {i}}}{2}}{\sqrt[{3}]{{\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}-{\sqrt {\left({\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}\right)^{2}+\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}}}}}}

红色字体部分为判别式

Δ

{\displaystyle \Delta }

Δ

>

0

{\displaystyle \Delta >0}

时,方程有一个实根和两个共轭複根;

Δ

=

0

{\displaystyle \Delta =0}

时,方程有三个实根:

(

b

c

6

a

2

b

3

27

a

3

d

2

a

)

2

=

(

c

3

a

b

2

9

a

2

)

3

=

0

{\displaystyle \left({\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}\right)^{2}=-\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}=0}

时,方程有一个三重实根;

(

b

c

6

a

2

b

3

27

a

3

d

2

a

)

2

=

(

c

3

a

b

2

9

a

2

)

3

0

{\displaystyle \left({\frac {bc}{6a^{2}}}-{\frac {b^{3}}{27a^{3}}}-{\frac {d}{2a}}\right)^{2}=-\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}\neq 0}

时,方程的三个实根中有两个相等;

Δ

<

0

{\displaystyle \Delta <0}

时,方程有三个不等的实根。

a

x

3

+

b

x

2

+

c

x

+

d

=

0

,

a

0

{\displaystyle ax^{3}+bx^{2}+cx+d=0,a\neq 0}

x

=

b

3

a

+

2

3

(

b

2

3

a

c

)

3

a

(

1

+

3

i

2

)

k

9

a

b

c

27

a

2

d

2

b

3

+

(

9

a

b

c

27

a

2

d

2

b

3

)

2

4

(

b

2

3

a

c

)

3

3

+

(

1

+

3

i

2

)

k

9

a

b

c

27

a

2

d

2

b

3

+

(

9

a

b

c

27

a

2

d

2

b

3

)

2

4

(

b

2

3

a

c

)

3

3

3

2

3

a

,

k

=

0

,

1

,

2

{\displaystyle x=-{{b} \over {3a}}+{{{\sqrt[{3}]{2}}\left(b^{2}-3ac\right)} \over {3a\left({{-1+{\sqrt {3}}i} \over {2}}\right)^{k}}{\sqrt[{3}]{9abc-27a^{2}d-2b^{3}+{\sqrt {\left(9abc-27a^{2}d-2b^{3}\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}}}}+{{\left({{-1+{\sqrt {3}}i} \over {2}}\right)^{k}}{\sqrt[{3}]{9abc-27a^{2}d-2b^{3}+{\sqrt {\left(9abc-27a^{2}d-2b^{3}\right)^{2}-4\left(b^{2}-3ac\right)^{3}}}}} \over {3{\sqrt[{3}]{2}}a}},k=0,1,2}

三角函数解

编辑

a

x

3

+

b

x

2

+

c

x

+

d

=

0

{\displaystyle ax^{3}+bx^{2}+cx+d=0}

,其中

a

0

{\displaystyle a\neq 0}

若令

Δ

=

(

b

3

27

a

3

d

2

a

+

b

c

6

a

2

)

2

+

(

c

3

a

b

2

9

a

2

)

3

=

α

2

+

β

3

<

0

{\displaystyle \Delta =\left({\frac {-b^{3}}{27a^{3}}}-{\frac {d}{2a}}+{\frac {bc}{6a^{2}}}\right)^{2}+\left({\frac {c}{3a}}-{\frac {b^{2}}{9a^{2}}}\right)^{3}=\alpha ^{2}+\beta ^{3}<0}

,则

x

1

=

b

3

a

+

2

β

cos

[

arccos

α

(

β

)

3

2

3

]

{\displaystyle x_{1}=-{\frac {b}{3a}}+2{\sqrt {-\beta }}\cos \left[{\frac {\arccos {\frac {\alpha }{(-\beta )^{\frac {3}{2}}}}}{3}}\right]}

x

2

=

b

3

a

+

2

β

cos

[

arccos

α

(

β

)

3

2

+

2

π

3

]

{\displaystyle x_{2}=-{\frac {b}{3a}}+2{\sqrt {-\beta }}\cos \left[{\frac {\arccos {\frac {\alpha }{(-\beta )^{\frac {3}{2}}}}+2\pi }{3}}\right]}

x

3

=

b

3

a

+

2

β

cos

[

arccos

α

(

β

)

3

2

2

π

3

]

{\displaystyle x_{3}=-{\frac {b}{3a}}+2{\sqrt {-\beta }}\cos \left[{\frac {\arccos {\frac {\alpha }{(-\beta )^{\frac {3}{2}}}}-2\pi }{3}}\right]}

卡尔达诺法

编辑

K

{\displaystyle K}

為域,可以進行開平方或立方運算。要解方程只需找到一個根

r

{\displaystyle r}

,然後把方程

a

x

3

+

b

x

2

+

c

x

+

d

{\displaystyle ax^{3}+bx^{2}+cx+d}

除以

x

r

{\displaystyle x-r}

,就得到一個二次方程,而我們已會解二次方程。

在一個代數封閉域,所有三次方程都有三個根。複數域就是這樣一個域,這是代數基本定理的結果。

解方程步驟:

把原來方程除以首項係數

a

(

a

0

)

{\displaystyle a\left(a\neq 0\right)}

,得到:

x

3

+

b

x

2

+

c

x

+

d

=

0

{\displaystyle x^{3}+b'x^{2}+c'x+d'=0}

,其中

b

=

b

a

{\displaystyle b'={\frac {b}{a}}}

c

=

c

a

{\displaystyle c'={\frac {c}{a}}}

d

=

d

a

{\displaystyle d'={\frac {d}{a}}}

代換未知項

x

=

z

b

3

{\displaystyle x=z-{\frac {b'}{3}}}

,以消去二次項。當展開

(

z

b

3

)

3

{\displaystyle \left(z-{\frac {b'}{3}}\right)^{3}}

,會得到

b

z

2

{\displaystyle -b'z^{2}}

這項,正好抵消掉出現於

b

(

z

b

3

)

2

{\displaystyle b'\left(z-{\frac {b'}{3}}\right)^{2}}

的項

b

z

2

{\displaystyle b'z^{2}}

。故得:

z

3

+

p

z

+

q

=

0

{\displaystyle z^{3}+pz+q=0}

,其中

p

{\displaystyle p}

q

{\displaystyle q}

是域中的數字。

p

=

c

b

2

3

{\displaystyle p=c'-{\frac {b'^{2}}{3}}}

q

=

2

b

3

27

b

c

3

+

d

{\displaystyle q={\frac {2b'^{3}}{27}}-{\frac {b'c'}{3}}+d'}

u

,

v

{\displaystyle u,v}

滿足

3

u

v

=

p

,

u

3

+

v

3

=

q

{\displaystyle 3uv=-p,u^{3}+v^{3}=-q}

,則

u

+

v

{\displaystyle u+v}

為解

這個假設的hint如下:

z

=

u

+

υ

{\displaystyle z=u+\upsilon }

。前一方程化為

(

u

+

υ

)

3

+

p

(

u

+

υ

)

+

q

=

0

{\displaystyle (u+\upsilon )^{3}+p(u+\upsilon )+q=0}

展開:

u

3

+

3

u

2

υ

+

3

u

υ

2

+

υ

3

+

p

u

+

p

υ

+

q

=

0

{\displaystyle u^{3}+3u^{2}\upsilon +3u\upsilon ^{2}+\upsilon ^{3}+pu+p\upsilon +q=0}

重組:

(

u

3

+

υ

3

+

q

)

+

(

3

u

υ

2

+

3

u

2

υ

+

p

u

+

p

υ

)

=

0

{\displaystyle (u^{3}+\upsilon ^{3}+q)+(3u\upsilon ^{2}+3u^{2}\upsilon +pu+p\upsilon )=0}

分解:

(

u

3

+

υ

3

+

q

)

+

(

u

+

υ

)

(

3

u

υ

+

p

)

=

(

u

3

+

υ

3

+

q

)

+

z

(

3

u

υ

+

p

)

=

0

{\displaystyle (u^{3}+\upsilon ^{3}+q)+(u+\upsilon )(3u\upsilon +p)=(u^{3}+\upsilon ^{3}+q)+z(3u\upsilon +p)=0}

U

=

u

3

{\displaystyle U=u^{3}}

V

=

υ

3

{\displaystyle V=\upsilon ^{3}}

。我們有

U

+

V

=

q

{\displaystyle U+V=-q}

U

V

=

p

3

27

{\displaystyle UV=-{\frac {p^{3}}{27}}}

因為

U

V

=

(

u

υ

)

3

=

(

p

3

)

3

{\displaystyle UV=(u\upsilon )^{3}=(-{\frac {p}{3}})^{3}}

。所以

U

{\displaystyle U}

V

{\displaystyle V}

是輔助方程

X

2

+

q

X

p

3

27

=

0

{\displaystyle \mathrm {X} ^{2}+q\mathrm {X} -{\frac {p^{3}}{27}}=0}

的根(韋達定理),可代一般二次方程公式得解。

接下來,

u

{\displaystyle u}

v

{\displaystyle v}

U

{\displaystyle U}

V

{\displaystyle V}

的立方根,適合

u

v

=

p

3

{\displaystyle uv=-{\frac {p}{3}}}

z

=

u

+

v

{\displaystyle z=u+v}

,最後得出

x

=

z

b

3

{\displaystyle x=z-{\frac {b'}{3}}}

在域

C

{\displaystyle \mathbb {C} }

裡,若

u

0

{\displaystyle u_{0}}

v

0

{\displaystyle v_{0}}

是立方根,其它的立方根就是

ω

u

0

{\displaystyle \omega u_{0}}

ω

2

u

0

{\displaystyle \omega ^{2}u_{0}}

,當然還有

ω

v

0

{\displaystyle \omega v_{0}}

ω

2

v

0

{\displaystyle \omega ^{2}v_{0}}

,其中

ω

=

e

2

i

π

3

=

1

+

3

i

2

{\displaystyle \omega =e^{\frac {2i\pi }{3}}={\frac {-1+{\sqrt {3}}i}{2}}}

,是1的一个复数立方根。

因為乘積

u

v

=

p

3

{\displaystyle uv=-{\frac {p}{3}}}

固定,所以可能的

(

u

,

v

)

{\displaystyle (u,v)}

(

u

0

,

v

0

)

{\displaystyle (u_{0},v_{0})}

(

ω

u

0

,

ω

2

v

0

)

{\displaystyle (\omega u_{0},\omega ^{2}v_{0})}

(

ω

2

u

0

,

ω

v

0

)

{\displaystyle (\omega ^{2}u_{0},\omega v_{0})}

。因此三次方程的其它根是

ω

u

0

+

ω

2

v

0

b

3

{\displaystyle \omega u_{0}+\omega ^{2}v_{0}-{\frac {b'}{3}}}

ω

2

u

0

+

ω

v

0

b

3

{\displaystyle \omega ^{2}u_{0}+\omega v_{0}-{\frac {b'}{3}}}

判别式

编辑

最先嘗試解的三次方程是實係數(而且是整數)。因為實數域並非代數封閉,方程的根的數目不一定是3個。所遺漏的根都在

C

{\displaystyle \mathbb {C} }

裡,就是

R

{\displaystyle \mathbb {R} }

的代數閉包。其中差異出現於

U

{\displaystyle U}

V

{\displaystyle V}

的計算中取平方根時。取立方根時則沒有類似問題。

可以證明實數根數目依賴於輔助方程的判別式

Δ

=

q

2

4

+

p

3

27

{\displaystyle \Delta ={\frac {q^{2}}{4}}+{\frac {p^{3}}{27}}}

Δ

>

0

{\displaystyle \Delta >0}

,方程有一个实根和两个共轭複根;

Δ

=

0

{\displaystyle \Delta =0}

,方程有三个实根:当

q

2

4

=

p

3

27

=

0

{\displaystyle {\frac {q^{2}}{4}}=-{\frac {p^{3}}{27}}=0}

时,方程有一个三重实根;当

q

2

4

=

p

3

27

0

{\displaystyle {\frac {q^{2}}{4}}=-{\frac {p^{3}}{27}}\neq 0}

时,方程的三个实根中有两个相等;

Δ

<

0

{\displaystyle \Delta <0}

,方程有三个不等的实根:

x

1

=

2

Q

cos

θ

3

b

3

a

,

x

2

,

3

=

2

Q

cos

θ

±

2

π

3

b

3

a

,

{\displaystyle x_{1}=2{\sqrt {Q}}\cos {\frac {\theta }{3}}-{\frac {b}{3a}},x_{2,3}=2{\sqrt {Q}}\cos {\frac {\theta \pm 2\pi }{3}}-{\frac {b}{3a}},}

其中

θ

=

arccos

R

Q

Q

,

Q

=

p

3

,

R

=

q

2

{\displaystyle \theta =\arccos {\frac {R}{Q{\sqrt {Q}}}},Q=-{\frac {p}{3}},R={\frac {q}{2}}}

(注意,由於此公式應對於

x

3

+

p

x

=

q

{\displaystyle x^{3}+px=q}

的形式,因此這裡的

q

{\displaystyle q}

實際上是前段的

q

{\displaystyle -q}

,應用時務必注意取負號即

R

=

q

2

{\displaystyle R=-{\frac {q}{2}}}

)。

注意到实系数三次方程有一實根存在,這是因為非常數多項式在

+

{\displaystyle +\infty }

{\displaystyle -\infty }

的極限是無窮大,對奇次多項式這兩個極限異號,又因为多項式是連續函數,所以從介值定理可知它在某點的值為0。

第一個例子

编辑

2

t

3

+

6

t

2

+

12

t

+

10

=

0

{\displaystyle 2t^{3}+6t^{2}+12t+10=0}

我們依照上述步驟進行:

t

3

+

3

t

2

+

6

t

+

5

=

0

{\displaystyle t^{3}+3t^{2}+6t+5=0}

(全式除以

2

{\displaystyle 2}

t

=

x

1

{\displaystyle t=x-1}

,代換:

(

x

1

)

3

+

3

(

x

1

)

2

+

6

(

x

1

)

+

5

=

0

{\displaystyle (x-1)^{3}+3(x-1)^{2}+6(x-1)+5=0}

,再展開

x

3

+

3

x

+

1

=

0

{\displaystyle x^{3}+3x+1=0}

x

=

u

+

v

{\displaystyle x=u+v}

U

=

u

3

{\displaystyle U=u^{3}}

V

=

v

3

{\displaystyle V=v^{3}}

。設

U

+

V

=

1

{\displaystyle U+V=-1}

U

V

=

1

{\displaystyle UV=-1}

U

{\displaystyle U}

V

{\displaystyle V}

X

2

+

X

1

=

0

{\displaystyle X^{2}+X-1=0}

的根。

U

=

1

5

2

{\displaystyle U={\frac {-1-{\sqrt {5}}}{2}}}

V

=

1

+

5

2

{\displaystyle V={\frac {-1+{\sqrt {5}}}{2}}}

u

=

1

5

2

3

{\displaystyle u={\sqrt[{3}]{\frac {-1-{\sqrt {5}}}{2}}}}

v

=

1

+

5

2

3

{\displaystyle v={\sqrt[{3}]{\frac {-1+{\sqrt {5}}}{2}}}}

t

=

x

1

=

u

+

v

1

{\displaystyle t=x-1=u+v-1}

=

1

5

2

3

+

1

+

5

2

3

1

1.3221853546

{\displaystyle ={\sqrt[{3}]{\frac {-1-{\sqrt {5}}}{2}}}+{\sqrt[{3}]{\frac {-1+{\sqrt {5}}}{2}}}-1\approx -1.3221853546}

该方程的另外两个根:

t

2

0.838907

+

1.75438

i

{\displaystyle t_{2}\approx -0.838907+1.75438i}

t

3

0.838907

1.75438

i

{\displaystyle t_{3}\approx -0.838907-1.75438i}

第二个例子

编辑

这是一个历史上的例子,因为它是邦别利考虑的方程。

方程是

x

3

15

x

4

=

0

{\displaystyle x^{3}-15x-4=0}

从函数

x

x

3

15

x

4

{\displaystyle x\mapsto x^{3}-15x-4}

算出判别式的值

Δ

=

13068

<

0

{\displaystyle \Delta =-13068<0}

,知道这方程有三实根,所以比上例更容易找到一个根。

前两步都不需要做,做第三步:

x

=

u

+

v

{\displaystyle x=u+v}

U

=

u

3

{\displaystyle U=u^{3}}

V

=

v

3

{\displaystyle V=v^{3}}

U

+

V

=

4

{\displaystyle U+V=4}

U

V

=

125

{\displaystyle UV=125}

U

{\displaystyle U}

V

{\displaystyle V}

X

2

4

X

+

125

=

0

{\displaystyle X^{2}-4X+125=0}

的根。这方程的判别式已算出是负数,所以只有实根。很吊诡地,这方法必须用到复数求出全是实数的根。这是发明复数的一个理由:复数是解方程必需工具,即使方程或许只有实根。

我们解出

U

=

2

11

i

{\displaystyle U=2-11{\mathrm {i} }}

V

=

2

+

11

i

{\displaystyle V=2+11{\mathrm {i} }}

。取复数立方根不同于实数,有两种方法:几何方法,用到辐角和模(把辐角除以3取模的立方根);代数方法,分开复数的实部和虚部:

现设

u

=

a

+

b

i

{\displaystyle u=a+b{\mathrm {i} }}

u

3

=

2

11

i

{\displaystyle u^{3}=2-11{\mathrm {i} }}

等价于:

a

3

3

a

b

2

=

2

{\displaystyle a^{3}-3ab^{2}=2}

(实部)

3

a

2

b

b

3

=

11

{\displaystyle 3a^{2}b-b^{3}=-11}

(虚部)

a

2

+

b

2

=

5

{\displaystyle a^{2}+b^{2}=5}

(模)

得到

a

=

2

{\displaystyle a=2}

b

=

1

{\displaystyle b=-1}

,也就是

u

=

2

i

{\displaystyle u=2-{\mathrm {i} }}

,而

v

{\displaystyle v}

是其共轭:

v

=

2

+

i

{\displaystyle v=2+{\mathrm {i} }}

归结得

x

=

u

+

v

=

(

2

i

)

+

(

2

+

i

)

=

4

{\displaystyle x=u+v=(2-{\mathrm {i} })+(2+{\mathrm {i} })=4}

,可以立时验证出来。

其它根是

x

=

j

(

2

i

)

+

j

2

(

2

+

i

)

=

2

+

3

{\displaystyle x'=j(2-{\mathrm {i} })+j^{2}(2+{\mathrm {i} })=-2+{\sqrt {3}}}

x

=

j

2

(

2

i

)

+

j

(

2

+

i

)

=

2

3

{\displaystyle x''=j^{2}(2-{\mathrm {i} })+j(2+{\mathrm {i} })=-2-{\sqrt {3}}}

,其中

j

=

1

+

3

i

2

{\displaystyle j={\frac {-1+{\sqrt {3}}i}{2}}}

Δ

{\displaystyle \Delta }

是负,

U

{\displaystyle U}

V

{\displaystyle V}

共轭,故此

u

{\displaystyle u}

v

{\displaystyle v}

也是(要适当选取立方根,记得

u

v

=

p

3

{\displaystyle uv=-{\frac {p}{3}}}

);所以我们可确保

x

{\displaystyle x}

是实数,还有

x

{\displaystyle x'}

x

{\displaystyle x''}

盛金公式法

编辑

a

x

3

+

b

x

2

+

c

x

+

d

=

0

,

a

0

{\displaystyle ax^{3}+bx^{2}+cx+d=0,a\neq 0}

,其中系数皆为实数。

判别式

编辑

重根判别式:

A

=

b

2

3

a

c

,

B

=

b

c

9

a

d

,

C

=

c

2

3

b

d

{\displaystyle A=b^{2}-3ac,\ B=bc-9ad,\ C=c^{2}-3bd}

总判别式:

Δ

=

B

2

4

A

C

{\displaystyle \Delta =B^{2}-4AC}

情况1:

A

=

B

=

0

{\displaystyle A=B=0}

编辑

x

1

=

x

2

=

x

3

=

b

3

a

=

c

b

=

3

d

c

{\displaystyle x_{1}=x_{2}=x_{3}={\frac {-b}{3a}}={\frac {-c}{b}}={\frac {-3d}{c}}}

情况2:

Δ

>

0

{\displaystyle \Delta >0}

编辑

y

1

,

2

=

A

b

+

3

a

(

B

±

B

2

4

A

C

2

)

{\displaystyle y_{1,2}=Ab+3a\left({\frac {-B\pm {\sqrt {B^{2}-4AC}}}{2}}\right)}

,得:

x

1

=

b

(

y

1

3

+

y

2

3

)

3

a

{\displaystyle x_{1}={\frac {-b-\left({\sqrt[{3}]{y_{1}}}+{\sqrt[{3}]{y_{2}}}\right)}{3a}}}

x

2

=

2

b

+

(

y

1

3

+

y

2

3

)

+

3

(

y

1

3

y

2

3

)

i

6

a

{\displaystyle x_{2}={\frac {-2b+\left({\sqrt[{3}]{y_{1}}}+{\sqrt[{3}]{y_{2}}}\right)+{\sqrt {3}}\left({\sqrt[{3}]{y_{1}}}-{\sqrt[{3}]{y_{2}}}\right){\rm {i}}}{6a}}}

x

3

=

2

b

+

(

y

1

3

+

y

2

3

)

3

(

y

1

3

y

2

3

)

i

6

a

{\displaystyle x_{3}={\frac {-2b+\left({\sqrt[{3}]{y_{1}}}+{\sqrt[{3}]{y_{2}}}\right)-{\sqrt {3}}\left({\sqrt[{3}]{y_{1}}}-{\sqrt[{3}]{y_{2}}}\right){\rm {i}}}{6a}}}

情况3:

Δ

=

0

{\displaystyle \Delta =0}

编辑

k

=

B

A

(

A

0

)

{\displaystyle k={\frac {B}{A}}\ (A\neq 0)}

,得:

x

1

=

b

a

+

k

{\displaystyle x_{1}={\frac {-b}{a}}+k}

x

2

=

x

3

=

k

2

{\displaystyle x_{2}=x_{3}={\frac {-k}{2}}}

情况4:

Δ

<

0

{\displaystyle \Delta <0}

编辑

t

=

2

A

b

3

a

B

2

A

A

(

A

>

0

,

1

<

t

<

1

)

,

θ

=

arccos

t

{\displaystyle t={\frac {2Ab-3aB}{2A{\sqrt {A}}}}\ (A>0,-1

,得:

x

1

=

b

2

A

cos

θ

3

3

a

{\displaystyle x_{1}={\frac {-b-2{\sqrt {A}}\cos {\frac {\theta }{3}}}{3a}}}

x

2

=

b

+

A

(

cos

θ

3

+

3

sin

θ

3

)

3

a

{\displaystyle x_{2}={\frac {-b+{\sqrt {A}}\left(\cos {\frac {\theta }{3}}+{\sqrt {3}}\sin {\frac {\theta }{3}}\right)}{3a}}}

x

3

=

b

+

A

(

cos

θ

3

3

sin

θ

3

)

3

a

{\displaystyle x_{3}={\frac {-b+{\sqrt {A}}\left(\cos {\frac {\theta }{3}}-{\sqrt {3}}\sin {\frac {\theta }{3}}\right)}{3a}}}

相关推荐

​DNF卢克RAID精英怪/BOSS攻略经验分享「P2暗路线篇」

DNF卢克RAID精英怪/BOSS攻略经验分享「P2暗路线篇」 今天小编给大家分享的是P2暗路线。 P2暗路线一共分为【黑暗之祭坛入口】、【黑暗之祭坛】

为什么微信发不出去视频?原因分析和解决办法

168 iPhone_iPad_Mac_apple 为什么微信发不出去视频?原因分析和解决办法 微信作为当下最流行的社交软件,在日常生活中使用十分频繁。然而,难免

stdin、stdout、stderr

语法 #define stdin /* implementation defined */ #define stdout /* implementation defined */ #define stderr /* implementation defined */ 备注 stdin、stdout 和 stderr 全局常量指针